首页 | 本学科首页   官方微博 | 高级检索  
     

图样间联想神经网络的稳定性研究
引用本文:许锐,李志能,黄达诠. 图样间联想神经网络的稳定性研究[J]. 计算机工程与应用, 2003, 39(22): 45-48,61
作者姓名:许锐  李志能  黄达诠
作者单位:1. 上海邮电设计院,上海,200050
2. 浙江大学信息与电子工程系,杭州,310027
基金项目:教育部骨干教师资助计划资助项目,浙江省自然科学基金资助项目
摘    要:图样间联想神经网络作为新型的联想模型,其联想功能和光学实现较Hopfield等图样内联想网络都更具优越性;但至今缺乏对图样间联想神经网络系统性能的全面完备的认知。文章详细研究了图样间联想网络的动力学稳定性,论证了恒零阈值下网络单步稳定的特性;并根据稳定性分析的直接法引入代表系统矛盾程度的准能量函数考察了网络趋向稳定的方式,结合实验统计指出图样间联想网络一般阈值下是渐近稳定的。据此提出了模型的阈值改进方案,引入了反馈,使网络联想性能在原模型程度上有所提高。

关 键 词:图样间联想  神经动力稳定性  直接法
文章编号:1002-8331-(2003)22-0045-04

Study on the Stability of Interpattern Association Neural Network
Xu Rui Li Zhineng Huang Daquan. Study on the Stability of Interpattern Association Neural Network[J]. Computer Engineering and Applications, 2003, 39(22): 45-48,61
Authors:Xu Rui Li Zhineng Huang Daquan
Affiliation:Xu Rui 1 Li Zhineng 2 Huang Daquan 21
Abstract:The newly advanced association model—— — interpattern association neural network(IPA)is superior to those of intrapattern associations such like the Hopfield model in both computing performances and optical implementations,while comprehensive cognition of IPA neural system are still to be known.In this paper,the neurodynamic stability of IPA model is studied in particular.It's proved that the net system comes to stable within one iteration in constant zero thresholds and is asymptotically stable in general instances according to Lyapunov's direct method and computer simu-lations.A threshold modification is then put forward to improve IPA's associating ability by introducing feedback to the network at the same time.
Keywords:interpattern association  neurodynamic stability  Lyapunov's direct method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号