Affiliation: | a Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA b Department of Food Science and Technology, Dalhousie University, Box 1000, Halifax, NS, Canada B3J 2X4 |
Abstract: | Gelation properties of gellan/gelatin mixed solutions were studied using dynamic viscoelastic testing at eight different ratios of gellan (1.6–0.2% w/v) to gelatin (0–1.4% w/v) and seven different calcium levels (0–30 mM). The gelation temperature and gelation rate of the mixed gels were significantly affected by the ratio of gellan to gelatin as well as concentration of calcium. Addition of calcium at low levels resulted in an increase in gelation temperature and gelation rate compared to gels with no added calcium. Further increases in calcium increased the gelation temperature, but caused a decrease in gelation rate of the mixed gels. In addition, the presence of gelatin generally had a negative influence on gelation rate, especially at high proportions and when the solution had a high gelling temperature, probably by physically hindering the growth and development of gellan crosslinks. It appeared that in the presence of calcium, gellan formed the continuous gel matrix, with gelatin present as a discontinuous phase. Gellan/gelatin mixtures can form gels over a wide temperature range by varying the ratio of the two polymers as well as the calcium concentration. |