首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of copper binding in the ternary system Cu2+/humic acid/goethite at neutral to acidic pH
Authors:Saito Takumi  Koopal Luuk K  Nagasaki Shinya  Tanaka Satoru
Affiliation:Department of Quantum Engineering and Systems Science, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan. takumi@flanker.q.t.u-tokyo.ac.jp
Abstract:Binding of heavy metal and actinide ions to natural colloids, such as humic substances (HSs) and metal (hydr)-oxides, plays an important role in the ecotoxicological behavior of these ions. Several thermodynamic models have been constructed to predict the speciation of these ions in metal/HS or metal/oxide binary systems. However, in natural environments the adsorption of HSs on oxides can influence the binding of target metals, leading to deviation from the additivity of calibrated binary models. In this study binding of copper (Cu2+) to the purified Aldrich humic acid (PAHA)/goethite complex in the neutral to acidic pH region was investigated by measuring Cu2+ binding isotherms. The measured isotherms were compared with the results obtained for the binary systems under similar conditions. The comparison revealed that Cu2+ binding in the ternary system is enhanced with respect to the sum of Cu2+ binding in the corresponding binary systems. From the analysis of the charging behavior of the adsorbed PAHA as well as the smeared-out potential profile near the PAHA/goethite interface, the increase of Cu2+ binding to the complex was mainly attributed to the decrease of proton competition to the functional groups of the adsorbed PAHA and the change of the electrostatic potential in the vicinity of the goethite surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号