首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural analysis of wear micromechanisms of WC–6Co cutting tools during high speed dry machining
Affiliation:1. Université de Toulouse, Mines Albi, INSA, UPS, ISAE, ICA (Institut Clément Ader) Campus Jarlard, F 81013 Albi Cedex 09, France;2. Université de Lorraine, Laboratoire d''Énergétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, Ecole Nationale Supérieure des Mines de Nancy (ENSMN), GIP-InSIC, 27 rue d''Hellieule, 88100 Saint-Dié-des-Vosges, France;1. BIAS - Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359 Bremen, Germany;2. University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany;3. IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359 Bremen, Germany
Abstract:This original study investigates the damages of WC–6Co uncoated carbide tools during dry turning of AISI 1045 steel at mean and high speeds. The different wear micromechanisms are explained on the basis of different microstructural observations and analyses made by different techniques: (i) optical microscopy (OM) at macro-scale, (ii) scanning electron microscopy (SEM), with back-scattered electron imaging (BSE) at micro-scale, (iii) energy dispersive spectroscopy (EDS), X ray mapping with wavelength dispersive spectroscopy (WDS) for the chemical analyses and (iv) temperature evolution during machining. We noted that at conventional cutting speed Vc  250 m/min, normal cutting tool wear types (adhesion, abrasion and built up edge) are clearly observed. However, for cutting speed Vc > 250 m/min a severe wear is observed because the behavior of the WC–6Co grade completely changes due to a severe thermomechanical loading. Through all SEM micrographs, it is observed that this severe wear consists of several steps as: excessive deformation of WC–6Co bulk material and binder phase (Co), deformation and intragranular microcracking of WC, WC grain fragmentation and production of WC fragments in the tool/chip contact. Thus, the WC fragments accumulated at the tool/chip interface cause abrasion phenomena and pullout WC from tool surface. WC fragments contribute also to the microcutting and microploughing of chips, which lead to form a transferred layer at the tool rake face. Finally, based on the observations of the different wear micromechanisms, a scenario of WC–6Co damages is proposed through to a phenomenological model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号