首页 | 本学科首页   官方微博 | 高级检索  
     


Strength and ductility of corner materials in cold-formed stainless steel sections
Affiliation:1. Department of Civil and Environmental Engineering, Imperial College London, London, UK;2. Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Abstract:The cold work from the manufacturing process of cold-formed steel members can enhance the strength but reduce the ductility of materials. Due to a high cost of stainless steels, it is desirable to utilize this enhanced strength and avoid the early fracture in cold-formed stainless steel members. The paper is concerned with the prediction of the enhanced stress–strain behaviour and reduced ductility of corner materials in cold-formed stainless steel sections. The enhanced strength of corner materials has been traditionally determined using empirical models. However, most of these empirical models are only able to predict the enhanced 0.2% proof strength, but are neither capable of predicting the enhanced ultimate strength nor able to determine the reduced ductility. This paper first presents a modified weighted-average method for predicting the post-ultimate stress–strain behaviour and the fracture strain for stainless steels. An advanced numerical approach is next presented for predicting the full-range stress–strain behaviour of corner materials in cold-formed stainless steel sections, in which the modified weighted-average method is incorporated. The accuracy of this approach is demonstrated by comparing its predictions with test results. The proposed approach is generally applicable to cold-worked materials for predicting their enhanced strength, reduced ductility and full-range stress–strain behaviour. The proposed method and numerical results can explain why and how the ultimate strength of cold-formed steels can be increased and how the post-ultimate stress–strain behaviour can be utilized through cold working.
Keywords:Stainless steels  Corner  Cold work  Strength enhancement  Reduced ductility  Post-ultimate stress–strain behaviour
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号