首页 | 本学科首页   官方微博 | 高级检索  
     


Diffusion fields associated with size and shape coarsening of oblate spheroids
Authors:Yiwen Mou  J M Howe
Affiliation:(1) Present address: the Department of Materials Science and Engineering, University of Virginia, USA;(2) AFE Technologies, 22901 Charlottesville, VA;(3) the Department of Materials Science and Engineering, University of Virginia, 22903 Charlottesville, VA
Abstract:The diffusion field or solute concentration distributed around an oblate spheroidal particle simulating a disc-shaped precipitate has been solved for varying particle aspect ratios and varying concentrations along the precipitate surface because of the curvature effect. With oblate spheroidal coordinates, the principal curvatures of the oblate spheroidal surface are derived as functions of the angular variable, and the Laplace field equation is separated into two Legendre equations on the angular variable and on the radial variable. The analytical solution to the Laplace equation, fitting the present boundary conditions, is secured as the sum of a Legendre function and a Legendre series composed of Legendre functions of the second kind with imaginary arguments. The Legendre function gives the concentration distribution with an ignored curvature effect, whereas the series shows the contribution from the curvature effect. Numerical results of normalized concentrations are presented as functions of the radial and angular variables for selected aspect ratios. The concentration distributions around both oblate and prolate spheroidal particles are shown to reduce to the concentration distributed around a spherical particle when the aspect ratio of the spheroids approaches unity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号