首页 | 本学科首页   官方微博 | 高级检索  
     

认知行为计算模型结合DM的教学质量提升
引用本文:彭丽蓉,周 磊. 认知行为计算模型结合DM的教学质量提升[J]. 计算机工程与应用, 2014, 50(9): 237-241
作者姓名:彭丽蓉  周 磊
作者单位:1.重庆工业职业技术学院 科研处,重庆 4011202.国际商业机器(中国)有限公司,浙江 宁波 315040
摘    要:为了根据认知及行为表现区分不同类别的学生以更好地提升教师教学质量,提出了基于认知行为计算模型的数据挖掘模型。基于各种重要的认知、行为输入参数,提出了认知、行为指数因子计算模型;依据所搜集的六个认知参数及三个行为参数,运用人工神经网络、灵敏度分析、数据挖掘及分类回归树算法对数据进行分类;将学生划分成三种不同的类别,从而更好地针对不同类别的学生实施不同的教学策略。实验结果表明,学生分类问题中,行为参数远比认知参数重要,分析结果表明了所提模型在教育系统教师工作支持领域的可行性。

关 键 词:认知行为计算模型  数据挖掘  教学质量提升  人工神经网络  灵敏度分析  分类回归树  

Fusion of DM with cognitive and behavior calculating models for improving teaching quality
PENG Lirong,ZHOU Lei. Fusion of DM with cognitive and behavior calculating models for improving teaching quality[J]. Computer Engineering and Applications, 2014, 50(9): 237-241
Authors:PENG Lirong  ZHOU Lei
Affiliation:1.Scientific Research Office, Chongqing Industry Polytechnic College, Chongqing 401120, China2.IBM(China)Company Limited, Ningbo, Zhejiang 315040, China
Abstract:To distinguish students with different categories by cognitive and behavioral expression so as to better improve teachers’teaching quality, a data mining model based on cognitive and behavior calculating models is proposed. Cogni-tive and behavior calculating models are proposed based on various important cognitive and behavioral input parameters. Artificial neural network, Sensitivity Analysis(SA), data mining, Classification and Regression Tree(C&RT)are applied to classifying by six cognitive parameters and three behavioral parameters. Students are classified to three categories so as to better implement different teaching strategies according to different categories of students. Experiments results show that the behavioral parameters are far more important than cognitive parameters. Analysis results indicate the feasibility of proposed models for supporting teachers’work in educational systems.
Keywords:cognitive and behavior calculating models  data mining  teaching quality improvement  artificial neural network  sensitivity analysis  classification and regression tree
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号