首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of hydroxyapatite and BMP‐2 on bioactivity and bone tissue formation ability of electrospun PLLA nanofibers
Authors:Xiaozhan Yang  Zhensheng Li
Affiliation:1. School of Optoelectronic Information, Chongqing University of Technology, Chongqing, China;2. College of Biomedical Engineering, Third Military Medical University, Chongqing, China
Abstract:An excellent bioactive scaffold material which could induce and promote new bone formation is essential in the bone repair field. In this study, the bioactive material hydroxyapatite (HA) and the bone morphogenetic protein‐2 (BMP‐2) were added to poly‐l‐lactic acid (PLLA) using the electrospinning method. Scanning electron microscopy investigations performed on four different fiber scaffolds, PLLA, PLLA/HA, PLLA/BMP‐2 and PLLA/HA/BMP‐2, revealed that the fibers of all scaffolds are closely interwoven, and the presence of large interconnected voids between the fibers, resulting in a three‐dimensional porous network structure that was similar to the structure of the extracellular matrix of healthy bones. In the MG63 cell culture growth experiments, the composite scaffold material PLLA/HA/BMP‐2 showed a higher bioactivity than the other three scaffold materials. The four scaffold materials were implanted in rabbits’ tibia for 30 and 90 days. The results of the animal experiments indicate that the capability of the PLLA/HA/BMP‐2 composite to induce and promote bone tissue formation was better compared with PLLA/HA or PLLA/BMP‐2, suggesting that PLLA combined with HA/BMP‐2 is a promising material for bone tissue repair. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42249.
Keywords:bioengineering  biomaterials  biomedical applications  fibers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号