首页 | 本学科首页   官方微博 | 高级检索  
     


Smoke and toxicity suppression by zinc salts in flame‐retardant polyurethane‐polyisocyanurate foams filled with phosphonate and chlorinated phosphate
Authors:Xiu Liu  You Zhou  Jianwei Hao  Jianxin Du
Affiliation:National Laboratory of Flame Retardant Materials, National Engineering and Technology Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
Abstract:Three types of zinc salts, ZnAl2O4, ZnFe2O4, and Zn2SiO4, were prepared by coprecipitation. Potential smoke and toxicity suppression by zinc salts in flame‐retardant polyurethane‐polyisocyanurate foams (FPUR‐PIR) with dimethylmethylphosphonate (DMMP) and tris (2‐chloropropyl) phosphate (TCPP) were investigated. The crystal structure and dispersity of zinc salts in FPUR‐PIR were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Smoke density, flame retardancy, and thermal degradation were studied using smoke density rating (SDR), limiting oxygen index (LOI), the cone calorimeter test, and thermogravimetry coupled with FTIR spectrophotometry (TGA‐FTIR). The results indicated that pure zinc salts were obtained and evenly dispersed on the cell wall of FPUR‐PIR. SDR and the specific extinction area (SEA) were significantly decreased, the time to second heat release rate peak (pk‐HRR) of FRUP‐PIR was delayed after incorporation of the zinc salts; zinc salts partially inhibited phosphorus oxide release into the gas phase, enhanced the condensed phase effect of phosphorus, reduced, and prolonged the release of isocyanate compound and hydrogen cyanide from FRUP‐PIR; due to an increase in the amount of char residues, which indicated the suppression of smoke and toxicity volatiles. ZnFe2O4 resulted in better char formation at the initial degradation stage of FPUR‐PIR, and ZnAl2O4 retained more phosphorus in the solid phase at higher temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41846.
Keywords:addition polymerization  flame retardance  foams  polyurethanes  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号