首页 | 本学科首页   官方微博 | 高级检索  
     

(101)面生长双轴应变Si带边模型
引用本文:宋建军,张鹤鸣,戴显英,胡辉勇,宣荣喜. (101)面生长双轴应变Si带边模型[J]. 半导体学报, 2008, 29(9): 1670-1673
作者姓名:宋建军  张鹤鸣  戴显英  胡辉勇  宣荣喜
作者单位:西安电子科技大学微电子学院,宽禁带半导体材料与器件教育部重点实验室,西安,710071
摘    要:采用结合形变势理论的k·p微扰法建立了(101)面弛豫Si1-xGex衬底上生长的双轴应变Si的带边模型.结果表明:[001],[001],[100]及[100]方向能谷构成了该应变Si的导带带边,其能量值随Ge组分的增加而增加;导带劈裂能与Ge组分成正比例线性关系;价带三个带边能级都随Ge组分的增加而增加,而且Ge组分越高价带带边劈裂能值越大;禁带宽度随着Ge组分的增加而变小.该模型可获得量化的数据,为器件研究设计提供有价值的参考.

关 键 词:应变Si  带边  k·p法
收稿时间:2015-08-18
修稿时间:2008-05-05

Band Edge Model of (101)-Biaxial Strained Si
Song Jianjun, Zhang Heming, Dai Xianying, Hu Huiyong, Xuan Rongxi. Band Edge Model of (101)-Biaxial Strained Si[J]. Journal of Semiconductors, 2008, In Press. Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X. Band Edge Model of (101)-Biaxial Strained Si[J]. J. Semicond., 2008, 29(9): 1670.Export: BibTex EndNote
Authors:Song Jianjun  Zhang Heming  Dai Xianying  Hu Huiyong  Xuan Rongxi
Affiliation:Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China;Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China;Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China;Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China;Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China
Abstract:A band edge model in (101)-biaxial strained Si on relaxed Si1-xGex alloy, or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that the [001], [001], [100] ,[100] valleys constitute the conduction band (CB) edge, which moves up in electron energy as the Ge fraction (x) increases. Furthermore, the CB splitting energy is in direct proportion to x and all the valence band (VB) edges move up in electron energy as x increases. In addition, the decrease in the indirect bandgap and the increase in the VB edge splitting energy as x increases are found. The quantitative data from the models supply valuable references for the design of the devices.
Keywords:strained Si  band edge  k· p method
本文献已被 万方数据 等数据库收录!
点击此处可从《半导体学报》浏览原始摘要信息
点击此处可从《半导体学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号