首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Sodium Butyrate on Adventitious Shoot Formation Varies among the Plant Species and the Explant Types
Authors:Myoung Hui Lee  Jiyoung Lee  Seung Hee Choi  Eun Yee Jie  Jae Cheol Jeong  Cha Young Kim  Suk Weon Kim
Affiliation:Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (M.H.L.); (J.L.); (S.H.C.); (E.Y.J.); (J.C.J.); (C.Y.K.)
Abstract:Histone acetylation plays an important role in plant growth and development. Here, we investigated the effect of sodium butyrate (NaB), a histone deacetylase inhibitor, on adventitious shoot formation from protoplast-derived calli and cotyledon explants of tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum). The frequency of adventitious shoot formation from protoplast-derived calli was higher in shoot induction medium (SIM) containing NaB than in the control. However, the frequency of adventitious shoot formation from cotyledon explants of tobacco under the 0.1 mM NaB treatment was similar to that in the control, but it decreased with increasing NaB concentration. Unlike in tobacco, NaB decreased adventitious shoot formation in tomato explants in a concentration-dependent manner, but it did not have any effect on adventitious shoot formation in calli. NaB inhibited or delayed the expression of D-type cyclin (CYCD3-1) and shoot-regeneration regulatory gene WUSCHEL (WUS) in cotyledon explants of tobacco and tomato. However, compared to that in control SIM, the expression of WUS was promoted more rapidly in tobacco calli cultured in NaB-containing SIM, but the expression of CYCD3-1 was inhibited. In conclusion, the effect of NaB on adventitious shoot formation and expression of CYCD3-1 and WUS genes depended on the plant species and whether the effects were tested on explants or protoplast-derived calli.
Keywords:histone deacetylase inhibitor   sodium butyrate (NaB)   histone acetylation   in vitro tissue culture   protoplasts   gene expression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号