首页 | 本学科首页   官方微博 | 高级检索  
     

变分模态分解组合广义形态滤波器的MEMS陀螺仪去噪方法
引用本文:芦竹茂,白洋,黄纯德,关少平,孟晓凯. 变分模态分解组合广义形态滤波器的MEMS陀螺仪去噪方法[J]. 控制理论与应用, 2023, 40(3): 509-515
作者姓名:芦竹茂  白洋  黄纯德  关少平  孟晓凯
作者单位:国网山西省电力公司电力科学研究院,山西太原030001;国网山西省电力公司,山西太原030021
基金项目:国网山西省电力公司科技项目(52053018000T)资助.
摘    要:为了更加有效地消除MEMS陀螺仪输出信号存在大量不同类型噪声的同时保留有效信号特征,本文提出了一种变分模态分解(VMD)的多尺度自适应组合广义形态滤波器(CGMF)去噪方法.该方法首先采用VMD将MEMS陀螺仪原始输出信号分解为多个不同尺度的具有特殊稀疏性的一高低频离散带限子信号内模函数(BLIMFs),然后通过选择CGMF中合适的结构元素(SEs)长度和几何结构对上述不同尺度BLIMFs进行自适应去噪处理,最后重建去噪后的BLIMFs获得去噪信号.通过实验验证并与现有的信号去噪方法相比,本方法的主要优点在于:1)解决了CGMF中SEs的长度和几何结构等关键参数的自适应选择问题; 2)针对不同类型噪声均进行了有效的分离和去噪处理.

关 键 词:变分模态分解  组合广义形态滤波  结构元素  MEMS陀螺仪  微机电系统  信号去噪
收稿时间:2021-03-31
修稿时间:2022-05-25

De-noising method of MEMS gyroscope based on variational mode decomposition combined generalized morphological filter
LU Zhu-mao,BAI Yang,HUANG Chun-de,GUAN Shao-ping and MENG Xiao-kai. De-noising method of MEMS gyroscope based on variational mode decomposition combined generalized morphological filter[J]. Control Theory & Applications, 2023, 40(3): 509-515
Authors:LU Zhu-mao  BAI Yang  HUANG Chun-de  GUAN Shao-ping  MENG Xiao-kai
Affiliation:State Grid Shanxi Electric Power Research Institute,State Grid Shanxi Electric Power Research Institute,State Grid Shanxi Electric Power Research Institute,State Grid Shanxi Electric Power Company,State Grid Shanxi Electric Power Research Institute
Abstract:In order to effectively eliminate a large number of different types of noise in the output signal of the MEMSgyroscope while preserving the effective signal characteristics, a multi-scale adaptive combined generalized morphologicalfilter (CGMF) denoising method based on the variational mode decomposition (VMD) is proposed in this paper. Firstly,the original output signal of the MEMS gyroscope is decomposed into a number of high and low frequency discrete bandlimited intrinsic mode functions (BLIMFs) of different scales with special sparsity by VMD. Then, the adaptive denoisingis performed on the BLIMFs of different scales by selecting appropriate structural elements (SEs) length and geometricstructure in CGMF. Finally, the denoised BLIMFs is reconstructed to obtain the denoised signal. Compared with the existingsignal denoising methods, the main advantages of this method are as follows: 1) it solves the adaptive selection of keyparameters such as the SEs length and geometric structure in CGMF; 2) effective separation and denoising are carried outfor different types of noise.
Keywords:VMD   CGMF   SE   MEMS gyroscope   microelectromechanical systems   signal denoising
本文献已被 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号