首页 | 本学科首页   官方微博 | 高级检索  
     


TCP/IP performance with random loss and bidirectional congestion
Authors:Lakshman  TV Madhow  U Suter  B
Affiliation:Dept. High Speed Networks Res., Lucent Technol. Bell Labs., Holmdel, NJ;
Abstract:With the growth in Internet access services over networks with asymmetric links such as asymmetric digital subscriber line (ADSL) and cable-based access networks, it becomes crucial to evaluate the performance of TCP/IP over systems in which the bottleneck link speed on the reverse path is considerably slower than that on the forward path. In this paper, we provide guidelines for designing network control mechanisms for supporting TCP/IP. We determine the throughput as a function of buffering, round-trip times, and normalized asymmetry (defined as the ratio of the transmission time of acknowledgment (ACK) in the reverse path to that of data packets in the forward path). We identify three modes of operation which are dependent on the forward buffer size and the normalized asymmetry, and determine the conditions under which the forward link is fully utilized. We also show that drop-from-front discarding of ACKs on the reverse link provides performance advantages over other drop mechanisms in use. Asymmetry increases the TCP already high sensitivity to random packet losses that occur on a time scale faster than the connection round-trip time. We generalize the by-now well-known relation relating the square root of the random loss probability to obtained TCP throughput, originally derived considering only data path congestion. Specifically, random loss leads to significant throughput deterioration when the product of the loss probability, the normalized asymmetry and the square of the bandwidth delay product is large. Congestion in the reverse path adds considerably to TCP unfairness when multiple connections share the reverse bottleneck link. We show how such problems can be alleviated by per-connection buffer and bandwidth allocation on the reverse path
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号