首页 | 本学科首页   官方微博 | 高级检索  
     


Si/a-Si core/shell nanowires as nonvolatile crossbar switches
Authors:Dong Yajie  Yu Guihua  McAlpine Michael C  Lu Wei  Lieber Charles M
Affiliation:Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Abstract:Radial core/shell nanowires (NWs) represent an important class of nanoscale building blocks with substantial potential for exploring fundamental electronic properties and realizing novel device applications at the nanoscale. Here, we report the synthesis of crystalline silicon/amorphous silicon (Si/a-Si) core/shell NWs and studies of crossed Si/a-Si NW metal NW (Si/a-Si x M) devices and arrays. Room-temperature electrical measurements on single Si/a-Si x Ag NW devices exhibit bistable switching between high (off) and low (on) resistance states with well-defined switching threshold voltages, on/off ratios greater than 10(4), and current rectification in the on state. Temperature-dependent switching experiments suggest that rectification can be attributed to barriers to electric field-driven metal diffusion. Systematic studies of Si/a-Si x Ag NW devices show that (i) the bit size can be at least as small as 20 nm x 20 nm, (ii) the writing time is <100 ns, (iii) the retention time is >2 weeks, and (iv) devices can be switched >10(4) times without degradation in performance. In addition, studies of dense one-dimensional and two-dimensional Si/a-Si x Ag NW devices arrays fabricated on crystalline and plastic substrates show that elements within the arrays can be independently switched and read, and moreover that bends with radii of curvature as small as 0.3 cm cause little change in device characteristics. The Si/a-Si x Ag NW devices represent a highly scalable and promising nanodevice element for assembly and fabrication of dense nonvolatile memory and programmable nanoprocessors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号