首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient reversible NOR gates and their mapping in optical computing domain
Affiliation:1. State Key Laboratory of Integrated Service Network, Xidian University, China;2. Institute of Microelectronics, Xidian University, China;3. Key Laboratory of Computer System and Architecture Institute of Computing Technology, Chinese Academy of Sciences, China;4. Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, The 54th Institute of CETC, China;1. Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11a, 16145 Genova, Italy;2. Department of Computer Science and Technology, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genova, Italy;3. Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via de Marini 6, I-16149 Genova, Italy
Abstract:Reversible logic is a computing paradigm in which there is a one to one mapping between the input and the output vectors. Reversible logic gates are implemented in an optical domain as it provides high speed and low energy computations. In the existing literature there are two types of optical mapping of reversible logic gates: (i) based on a semiconductor optical amplifier (SOA) using a Mach–Zehnder interferometer (MZI) switch; (ii) based on linear optical quantum computation (LOQC) using linear optical quantum logic gates. In reversible computing, the NAND logic based reversible gates and design methodologies based on them are widely popular. The NOR logic based reversible gates and design methodologies based on them are still unexplored. In this work, we propose two NOR logic based n-input and n-output reversible gates one of which can be efficiently mapped in optical computing using the Mach–Zehnder interferometer (MZI) while the other one can be mapped efficiently in optical computing using the linear optical quantum gates. The proposed reversible NOR gates work as a corresponding NOR counterpart of NAND logic based Toffoli gates. The proposed optical reversible NOR logic gates can implement the reversible boolean logic functions with a reduced number of linear optical quantum logic gates or reduced optical cost and propagation delay compared to their implementation using existing optical reversible NAND gates. It is illustrated that an optical reversible gate library having both optical Toffoli gate and the proposed optical reversible NOR gate is superior compared to the library containing only the optical Toffoli gate: (i) in terms of number of linear optical quantum gates when implemented using linear optical quantum computing (LOQC), (ii) in terms of optical cost and delay when implemented using the Mach–Zehnder interferometer.
Keywords:Reversible logic  Optical computing  Reversible NOR logic  Toffoli gate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号