首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于分级输入训练神经网络的非线性主元分析
引用本文:赵忠盖,刘飞,徐保国. 一种基于分级输入训练神经网络的非线性主元分析[J]. 信息与控制, 2005, 34(6): 656-659
作者姓名:赵忠盖  刘飞  徐保国
作者单位:江南大学自动化研究所,江苏,无锡,214122
基金项目:教育部科学技术研究重点资助项目(1105088),国家十五攻关计划资助项目(2004BA204B08)
摘    要:基于输入训练神经网络的非线性主元分析(PCA)能够有效地提取过程变量的非线性主元,但是存在主元的个数不能通过网络训练确定,且各个主元重要程度在神经网络中无法区分等缺点,本文提出一种分级输入自调整神经网络,并进一步提出基于此网络的非线性PCA,通过多级输入自调整神经网络,将主元按顺序找出,且根据主元对过程数据的预测误差定量地确定出主元的个数,克服了上述缺点.

关 键 词:非线性主元分析  分级输入自调整神经网络  主元个数  主元顺序
文章编号:1002-0411(2005)06-0656-04
收稿时间:2005-04-15
修稿时间:2005-04-15

Nonlinear Principal Component Analysis Based on Hierarchical Input-training Neural Network
ZHAO Zhong-gai,LIU Fei,XU Bao-guo. Nonlinear Principal Component Analysis Based on Hierarchical Input-training Neural Network[J]. Information and Control, 2005, 34(6): 656-659
Authors:ZHAO Zhong-gai  LIU Fei  XU Bao-guo
Affiliation:Institute of Automation, Southern Yangtze University , Wuxi 214122, China
Abstract:Nonlinear principal component analysis(PCA) based on neural network with inputs training can effectively extract nonlinear principal components(PCs) from process variables,but the number of PCs can not be decided by training network,and the order of PCs can not be distinguished.In order to overcome these defaults,a hierarchical input-training neural network is proposed,and a nonlinear PCA based on this kind of network is presented,which can orderly find nonlinear PCs and quantitatively determine the number of PCs according to the prediction error of process data based on PCs.
Keywords:nonlinear principal component analysis  hierarchical input-training neural network  PC number  PC order  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号