首页 | 本学科首页   官方微博 | 高级检索  
     


Research on Sustainable Steelmaking
Authors:R J Fruehan
Affiliation:(1) Center for Iron and Steelmaking Research, Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract:The international steel community is faced with the challenge of developing processes that will make steel production more sustainable in the future. Specifically, processes that produce less CO2 and less net waste materials and emissions and that consume less energy are required. This article outlines where energy consumption and CO2 emissions are high and can be reduced. Reductions can be achieved by incremental improvements to existing processes or by a “break-through innovative process”; both strategies are examined. Since most of the energy consumption and CO2 generation occur in ironmaking, research in this area is emphasized. Research on controlling the cohesive zone in the blast furnace, improving the final stages of reduction in direct reduction processes, the use of biomass, and other innovative processes for ironmaking are reviewed. In oxygen steelmaking, improved postcombustion (PC) to allow for more scrap melting is examined. Postcombustion and slag foaming in the electric arc furnace (EAF) in order to reduce energy is reviewed. R.J. Fruehan is currently the U. S. Steel University Professor at Carnegie Mellon University. He received his B.S. and Ph.D. degrees from the University of Pennsylvania and was an NSF Scholar at Imperial College, University of London. Dr. Fruehan organized the Center for Iron and Steelmaking Research, and is currently the Co-Director. He was Director of the Sloan Steel Industry Study, which examines the critical issues impacting a company’s competitiveness and involves numerous faculty at several universities from 1992 to 2002. Dr. Fruehan has authored over 250 papers, two books on steelmaking technologies, co-authored a book on managing for competitiveness, and is the holder of six patents. He has received several awards, including the 1970 and 1982 Hunt Medal (AIME), the 1982 and 1991 John Chipman Medal (AIME), 1989 Mathewson Gold Medal (TMS-AIME), the 1993 Albert Sauveur Award (ASM International), the 1976 Gilcrist Medal (Medals Society UK), the 1996 Howe Memorial Lecture (ISS of AIME), the 1999 Benjamin Fairless Award (ISS of AIME), the Brimacombe Prize (ISS, TMS, CSM) (2000), the 2004 Bessemer Gold Medal (Institute of Materials, Minerals & Mining (UK); an IR100 Award for the invention of the oxygen sensor and the TMS Science Award (2008). He is a Distinguished Member of the Iron and Steel Society, an Honorary Member of AIME, an Honorary Member of the Iron and Steel Institute of Japan and served as President of the Iron and Steel Society of AIME from 1990 to 1991. He was elected a Member of the National Academy of Engineers in 1999.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号