首页 | 本学科首页   官方微博 | 高级检索  
     

甲烷部分氧化过程Rh负载的泡沫独石的稳定性
引用本文:丁石,程音弘,吴昌宁,金涌,程易.甲烷部分氧化过程Rh负载的泡沫独石的稳定性[J].过程工程学报,2009,9(2):375-380.
作者姓名:丁石  程音弘  吴昌宁  金涌  程易
作者单位:绿色反应工程与工艺北京市重点实验室, 清华大学化学工程系 绿色反应工程与工艺北京市重点实验室, 清华大学化学工程系 绿色反应工程与工艺北京市重点实验室, 清华大学化学工程系 清华大学 绿色反应工程与工艺北京市重点实验室, 清华大学化学工程系
基金项目:教育部全国优秀博士学位论文作者专项基金,中石油基础研究基金 
摘    要:研究了不同孔径的Rh泡沫独石催化剂在甲烷部分氧化过程中的稳定性. 结果表明,长度3 mm、Rh负载量0.3%(w)、孔径0.32 mm的泡沫独石催化剂与长度10 mm、Rh负载量0.3%(w)、孔径0.576 mm的泡沫独石催化剂具有相同的初始催化性能,但小孔径催化剂的失活速率仅为大孔的1/5. 建立了耦合基元反应动力学的计算流体力学模拟平台,模拟了所用的2种催化剂的内部浓度场和催化剂表面温度. 小孔径催化剂具有更大的单位体积催化表面积,使放热氧化反应的反应速率提高了1.1倍,而将吸热的重整反应速率提高了3.7倍. 小孔径催化剂强化催化剂床层内蒸汽重整反应,其热点温度比大孔径催化剂低171℃. 孔径0.576 mm的催化剂将单位体积催化表面积增大8倍,能使催化剂的热点温度降低235℃.

关 键 词:催化部分氧化  Rh  泡沫独石  稳定性  计算流体力学  基元反应动力学  
收稿时间:2008-10-29
修稿时间:2009-1-7

Stability of Rh-coated Foam Monolith for Catalytic Partial Oxidation of Methane
DING Shi,CHENG Yin-hong,WU Chang-ning,JIN Yong,CHENG Yi.Stability of Rh-coated Foam Monolith for Catalytic Partial Oxidation of Methane[J].Chinese Journal of Process Engineering,2009,9(2):375-380.
Authors:DING Shi  CHENG Yin-hong  WU Chang-ning  JIN Yong  CHENG Yi
Affiliation:Department of Chemical Engineering;Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology;Tsinghua University;Beijing 100084;China
Abstract:The stability of Rh-coated foam monolith with different pore sizes for catalytic partial oxidation of methane was investigated. The results showed that 0.3%(w) Rh coated foam with 3 mm in length and 0.32 mm in pore size had similar initial catalytic performances with the foam at 10 mm in length and 0.576 mm in pore size, but its deactivation rate was only 1/5 of the latter. The CFD modeling coupled with detailed elementary kinetics was successfully established and applied to predict the species concentration and surface temperature profiles within the two catalysts above. The foam with a smaller pore size, which had a higher catalytic surface area per unit volume, increased the rates of exothermic oxidation reaction and endothermic reforming reaction by 1.1 and 3.7 times, respectively. As a consequence, more steam reforming reaction occurred and its hot-spot temperature was 171℃ lower than the foam with a larger pore size. The hot-spot temperature of the foam with 0.576 mm in pore size was decreased by 235℃ after increasing its catalytic surface area per unit volume by 8 times.
Keywords:Rh
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《过程工程学报》浏览原始摘要信息
点击此处可从《过程工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号