首页 | 本学科首页   官方微博 | 高级检索  
     

DBD演算法BP神经网络水质综合模拟研究
引用本文:龙腾锐,郭劲松,霍国友,李胜海. DBD演算法BP神经网络水质综合模拟研究[J]. 哈尔滨建筑大学学报, 2002, 35(4): 38-42
作者姓名:龙腾锐  郭劲松  霍国友  李胜海
作者单位:重庆大学城市建设与环境工程学院,四川,重庆,400045
基金项目:国家自然科学基金重点资助项目(59838300),国家自然科学基金资助项目(59778021)
摘    要:建立水质模型对水体水质的变化进行模拟是一条有效的途径。由于污染物之间的相互作用以及水环境中物理、化学、生物、水力特征的高度非线性耦合,对其了解是有限的,致使传统的微分方程建模方法和数值求解在应用中遇到许多困难。本文采用BP人工神经网络进行河流综合水质模型的建模,为了加强模型的收敛速度采用学习速率自适应的DBD演算法,通过应用长江干流重庆段实测水质样本对模型进行的训练与检验表明:该模型用于一维水质综合模拟可行,且精度较高,为河流水质模拟提供了一条简便可行的新方法。

关 键 词:DBD演算法 BP神经网络 水质 模拟
文章编号:1006-6780(2002)04-0038-05
修稿时间:2001-12-31

General water quality simulation model based on delta-bar-delta algorithm of artificial neural network
LONG Teng-rui,GUO Jin-song,HUO Guo-you,LI Sheng-hai. General water quality simulation model based on delta-bar-delta algorithm of artificial neural network[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35(4): 38-42
Authors:LONG Teng-rui  GUO Jin-song  HUO Guo-you  LI Sheng-hai
Abstract:Based on the theory of delta-bar-delta algorithm(DBD)of Artificial Neural Networks and concept of general water quality simulation,a model of general water quality simulation of one -dimensional was put forward.After learning of this model with the data of water quality of Yangtze River mainstream in Chongqing region,the adaptability of the model to simulate water quality was examined.The result shows that it is feasible for general water quality simulation and is more accurate than traditional model of water quality;it is better for speed of learn is DBD and simulate of congener water quality.BP neural network inaugurates a new approach for general water quality synthesize simulation.
Keywords:artificial neural network  water quality  simulation  DBD algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号