首页 | 本学科首页   官方微博 | 高级检索  
     


Einfluß der Festigkeit unlegierter und niedriglegierter Stähle auf H-induzierte Korrosionserscheinungen bei zügiger plastischer Belastung
Authors:W. Kirschner  W. Dahl  W. Schwenk
Abstract:Influence of mechanical strength on hydrogen-induced corrosion effects on unalloyed and low-alloysteels subjected to slow strain rate tests Three steels were subjected to various heat treatments or cold working to produce 7 variants of strength. Specimens from these materials were tested in 9 aqueous solutions containing various acidic components by the constant strain rate technique under cathodic polarisation or free corrosion conditions. Hydrogen induced cracks were only observed after passing the maximum load. Hydrogen induced cracking and the decrease in the reduction of area (hydrogen embrittlement) show a good correlation with the mechanical properties of the materials. For less ductile materials the number of cracks decreased with increased embrittlement. The magnitude of hydrogen embrittlement depends on the concentration of undissociated acid in the test solution and is independent of pH value. O2 can reduce the embrittlement. The effect of test solution composition decreases as the cathodic polarisation potential becomes more negative, because hydrogen will then be generated from H2O. There is no correlation between the type of corrosion effects and the strength of the material, except in the case of highly sensitive high strength variants with Rm in excess of 1000 N/mm2. Quenched and tempered low alloy steels, even at high strength levels, have significantly higher resistance to hydrogen embrittlement than significantly higher resistance to hydrogen embrittlement than unalloyed steels. The same is also ture for workhardened variants. For unalloyed steels, metallurgical cleanness seems to have a favourable influence. No hydrogen induced corrosion effects were observed in specimens tested at 907°C under free corrosion conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号