首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrasonic welding using tie-layer materials. part I: Analysis of process operation
Authors:N Tateishi  T H North  R T Woodhams
Abstract:Ultrasonic welding of oriented polypropylene (OPP) using tie-layer materials has been examined. The thermal cycle at the joint interface was evaluated using a high speed data acquisition system, and concurrent changes in horn displacement (penetration) and the output power were monitored. The model explaining process operation involves four phases, i.e., I–where heating occurs because of the stresses generated in asperities on the contacting surfaces; II–where the whole tie-layer reaches the melting point; III–where the polymer melt is subjected to intense heating from viscous dissipation and is squeezed out; and IV–where the joint cools after welding. In the early stages of ultrasonic welding the heat generated at asperities on the contacting surfaces leads to melting of the tie-layer/oriented polypropylene interface within 50 ms. The tie-layer heats up because of a combination of viscoelastic dissipation and heat conduction from the oriented polypropylene/tie-layer interface, and the rate of temperature rise at the midline of the tie-layer is in the range 200°/s to 400°/s. The reduction in thickness of the test specimens (penetration) is negligible up to the time when the tie-layer melts completely, and then changes rapidly when the melted polymer at the joint interface is squeezed out. The influence of machine parameters (amplitude and contact pressure) and of tie-layer Melt Flow Index is also examined. The total time required for completion of the welding process decreases when the amplitude and applied pressure are increased. The use of low Melt Flow Index tie-layers produces peak temperature as high as 600° at the bondline, and little material is ejected during the ultrasonic welding operation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号