首页 | 本学科首页   官方微博 | 高级检索  
     


Deformation dynamics at low and ambient temperatures
Authors:P Rodriguez  S K Ray
Affiliation:(1) Metallurgy Programme, Indira Gandhi Centre for Atomic Research, 603 102 Kalpakkam, India
Abstract:The variation of tensile yield stress at a constant strain rate as a function of temperature for well-annealed pure metals show, with increasing temperatures, a rather sharp drop in yield stress (low temperature regime), followed by the intermediate temperature regime where yield stress decreases more slowly (and the ratio of yield stress to shear modulus remains more or less constant), which in turn is followed by the high temperature regime where the yield stress drops again rather sharply. The paper discusses the phenomenological framework for studying deformation dynamics in the low and intermediate temperature regimes. The approach adopted is the well-known state variable approach, where the evolutionary nature of deformation structure is described by one or more structure variables such that the current values of mechanical variables and structure variables together completely define the current state of deformation. A critical analysis of experimental results available suggest that at least for deformation at low strain rates, stress-rate is probably not a state variable of deformation. Thus deformation is most conveniently studied in terms of TASRA (thermally activated strain rate analysis) where the stress, plastic strain rate, temperature and structure are interrelated through a Gibb’s free energy for thermal activation by an Arrhenius equation. The stress-dependence of Gibb’s free energy and its maximum value then form the basis of identifying the rate-controlling obstacles. The need for careful experimentation and systematic analysis is illustrated by the example of low temperature deformation of hard hep metals. Modelling for the evolution of deformation structure is also touched upon.
Keywords:Deformation dynamics  time-independent deformation  thermally-activated strain rate analysis  hard hep metals  dynamic strain ageing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号