首页 | 本学科首页   官方微博 | 高级检索  
     


Optically and electrically excited emissions from organic semiconducting oligomer crystals
Authors:Shu Hotta
Affiliation:Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Sakyo‐ku, Kyoto, Japan
Abstract:This paper reviews optically and electrically excited emissions from organic semiconducting oligomers in the form of their single crystals. Of the semiconducting oligomers, the review focuses on thiophene/phenylene co‐oligomers (TPCOs). The topics cover crystal growth and laser oscillation along with related spectrally narrowed emissions of TPCO crystals. Aside from the strong excitation with a laser beam, weak excitation using a mercury lamp produces optical fringes superimposed on broadband emission spectra. The laser oscillation spectra accompanied by longitudinal multimode and optical fringes observed from the weak excitation have the same origin. This enables us to determine optical constants (i.e. refractive indices) and their dispersion of the crystals and provides sufficient information for the construction of optoelectronic devices based on the organic crystals. As a typical example, the review outlines the improved device constitution and performance as well as device operation methods with light‐emitting field‐effect transistors (LEFETs), because the device configuration is suited for cutting‐edge devices including lasers. Finally the review presents device performance of LEFETs having a diffraction grating. These devices are suited for exploring the possibility of constructing a next‐generation current‐injected laser device. © 2016 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Keywords:organic semiconductor  thiophene/phenylene co‐oligomer  laser oscillation  spectrally narrowed emission  optical constant  light‐emitting field‐effect transistor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号