首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations
Authors:Bagri Akbar  Kim Sang-Pil  Ruoff Rodney S  Shenoy Vivek B
Affiliation:School of Engineering, Brown University, Providence, Rhode Island 02912, United States.
Abstract:We have studied the thermal conductance of tilt grain boundaries in graphene using nonequilibrium molecular dynamics simulations. When a constant heat flux is allowed to flow, we observe sharp jumps in temperature at the boundaries, characteristic of interfaces between materials of differing thermal properties. On the basis of the magnitude of these jumps, we have computed the boundary conductance of twin grain boundaries as a function of their misorientation angles. We find the boundary conductance to be in the range 1.5 × 10(10) to 4.5 × 10(10) W/(m(2) K), which is significantly higher than that of any other thermoelectric interfaces reported in the literature. Using the computed values of boundary conductances, we have identified a critical grain size of 0.1 μm below which the contribution of the tilt boundaries to the conductivity becomes comparable to that of the contribution from the grains themselves. Experiments to test the predictions of our simulations are proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号