首页 | 本学科首页   官方微博 | 高级检索  
     


N-nitrosamines formation from secondary amines by nitrogen fixation on the surface of activated carbon
Authors:Padhye Lokesh P  Hertzberg Benjamin  Yushin Gleb  Huang Ching-Hua
Affiliation:School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.
Abstract:Our previous study demonstrated that many commercial activated carbon (AC) particles may catalyze transformation of secondary amines to yield trace levels of N-nitrosamines under ambient aerobic conditions. Because of the widespread usage of AC materials in numerous analytical and environmental applications, it is imperative to understand the reaction mechanism responsible for formation of nitrosamine on the surface of ACs to minimize their occurrence in water treatment systems and during analytical methods employing ACs. The study results show that the AC-catalyzed nitrosamine formation requires both atmospheric oxygen and nitrogen. AC's surface reactive sites react with molecular oxygen to form reactive oxygen species (ROS), which facilitate fixation of molecular nitrogen on the carbon surfaces to generate reactive nitrogen species (RNS) likely nitrous oxide and hydroxylamine that can react with adsorbed amines to form nitrosamines. AC's properties play a crucial role as more nitrosamine formation is associated with carbon surfaces with higher surface area, more surface defects, reduced surface properties, higher O(2) uptake capacity, and higher carbonyl group content. This study is a first of its kind on the nitrosamine formation mechanism involving nitrogen fixation on AC surfaces, and the information will be useful for minimization of nitrosamines in AC-based processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号