加砂油井水泥石高温力学性能衰退机制研究进展 |
| |
引用本文: | 姚晓,葛荘,汪晓静,周仕明,解志益,何青水. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008 |
| |
作者姓名: | 姚晓 葛荘 汪晓静 周仕明 解志益 何青水 |
| |
作者单位: | 1.南京工业大学材料科学与工程学院, 南京 210009; |
| |
基金项目: | 国家科技重大专项"超深高温高压油气井固井关键技术"(编号:2017ZX05005005-003)和江苏高校优势学科建设工程资助项目联合资助。 |
| |
摘 要: | 加砂油井水泥是常用高温固井材料,但在部分高温地层服役时存在短期内水泥石力学性能明显衰退及水泥环层间封隔失效问题,明确其高温力学性能失效机制将有助于合理使用加砂油井水泥。为此,笔者调研了国内外加砂油井水泥高温水化产物和石英砂(掺量、粒径)对加砂水泥石力学性能影响的相关文献,并对其进行了归纳分析。结果表明:加砂油井水泥石在110~210℃温度下服役,可长期保持较好的抗高温性能;在210~300℃静态水环境下,通过调整石英砂级配和掺量可延缓水泥石高温下力学性能的衰退;地层温度超过300℃且处于动态水环境时,由于SiO2大量溶出,加砂油井水泥石难以满足热采井固井质量要求。此外,基于对加砂水泥石硅溶出、水化产物脱钙现象及硬硅钙石晶粒形貌变化的分析,探讨了加砂油井水泥石高温力学性能失效作用机制,并提出了改善其高温力学性能的技术措施。
|
关 键 词: | 固井 热采井 油井水泥 石英砂 水化产物 抗压强度 渗透率 |
收稿时间: | 2017-07-03 |
Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes |
| |
Affiliation: | 1.College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China;2.Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, Jiangsu, 210008, China;3.Sinopec Research Institute of Petroleum Engineering, Beijing, 100101, China |
| |
Abstract: | Sand-containing cement,as the most common cementing material used in high temperature regimes,can encounter problems such as serious degradation of mechanical properties and failure of interval sealing of cement sheath in short time when being applied to high-temperature formations.Hence,the identification of a failure mechanism of mechanical properties under high temperature should facilitate the rational usage of sand-containing cement.By investigating the relevant domestic and overseas documents surrounding the effects of high-temperature hydration products and sand (with factors of quantity and grain size considered) mixed in sand-containing cement on its mechanical properties,it is possible to summarize and analyze the results in a single paper. Results indicated that the sand-containing cement could resist high temperature in a long term under 110-210℃;under the static water environment of 210-300℃,and that this formulation was capable of slowing down the degradation of mechanical properties of cement through adjusting the granular composition of quartz sand.Results also found that under the formation temperature of higher than 300℃ and with a dynamic water environment with a large quantity of SiO2 dissolved out,the sand-containing cement couldn’t meet the quality technical requirements for cementing the targeted thermal production wells.Further,based on the analysis of the phenomena of silicon separated from sand-containing cement and the decalcification of hydration products,along with the variation of morphology of xonotlite crystalline grains,it was possible to analyze and model the failure mechanism of mechanical properties of sand-containing cement under high temperature.At the end,recommendations for technical measures that would improve the properties were proposed and advanced. |
| |
Keywords: | |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《石油钻探技术》浏览原始摘要信息 |
|
点击此处可从《石油钻探技术》下载全文 |
|