首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于极值思想的多序列联配求精算法
引用本文:邓伟林,胡桂武,郑启伦,彭宏,胡劲松. 一种基于极值思想的多序列联配求精算法[J]. 计算机工程, 2006, 32(2): 200-202
作者姓名:邓伟林  胡桂武  郑启伦  彭宏  胡劲松
作者单位:1. 广东轻工职业技术学院计算机系,广州,510300
2. 华南理工大学计算机科学与工程学院,广州,510640;广东商学院数学系,广州,510320
3. 华南理工大学计算机科学与工程学院,广州,510640
基金项目:中国科学院资助项目;广东省博士启动基金
摘    要:多序列联配(MSA)是一个NP问题,为了取得一个好的联配结果,常用渐进和迭代两种方法,但渐进方法不能调整早期的错误,迭代方法面临怎样跳出局部最优的问题。该文提出了一种新的求精方法,该方法基于极值遗传算法和挖掘策略。极值遗传算法基于极值组合元素,能够减少搜索空间。易于找到全局最优解。算法实现过程中,首先用挖掘算法挖掘出已知联配中的不良序列块,然后所有的不良序列块用极值遗传算法重新联配。当初始的序列是用渐进算法联配时,新的求精方法能调整早期的一些错误,充分结合渐进和迭代算法的优点。最后算法用来自于数据库BAliBASE中数据进行了验证。

关 键 词:多序列联配  组合极值  遗传算法
文章编号:1000-3428(2006)02-0200-03
收稿时间:2004-12-29
修稿时间:2004-12-29

A Refining Algorithm Based on Extreme Genetic Algorithm for Multiple Sequence Alignment
DENG Weilin,HU Guiwu,ZHENG Qilun,PENG Hong,HU Jinsong. A Refining Algorithm Based on Extreme Genetic Algorithm for Multiple Sequence Alignment[J]. Computer Engineering, 2006, 32(2): 200-202
Authors:DENG Weilin  HU Guiwu  ZHENG Qilun  PENG Hong  HU Jinsong
Affiliation:1. Department of Computing, Guangdong Industry Technical College, Guangzhou 510300; 2. College of Computer Science and Engineering, South China University of Technology, Guangzhou 510640; 3. Department of Mathematics, Guangdong Business College, Guangzhou 510320
Abstract:The MSA (Multiple Sequence Alignment) problem is NP-hard. In order to achieve a sound alignment, progressive and iterative approaches are generally used, but progressive approaches are unable to adjust misalignments in early stages. Iterative approaches face the challenge on how to escape from local optimal alignments. This paper proposes a novel algorithm for refining multiple sequence alignment, which is based on extreme genetic algorithm (EGA) and mine strategy. EGA is based on recombining extreme elements, which reduces the search time efficiently and finds global extreme easily. Mine strategy can mine bad-aligned blocks in alignment done by other algorithms. Firstly, it mines bad-aligned blocks from multiple sequence alignment using mine strategy. Secondly, all bad-aligned blocks are realigned by EGA. When an initial alignment has been generated by progressive approaches, the novel refinement algorithm can adjust misalignments in initial alignment. A final alignment is generated by incorporating the strength of progressive and iterative approaches. The novel algorithm is tested with the datasets from BAliBASE.
Keywords:Multiple sequence alignment   Recombing extreme   Genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号