首页 | 本学科首页   官方微博 | 高级检索  
     

应用最小二乘支持向量机预测煤的发热量
引用本文:关跃波,尹涌澜,孙斌,周云龙,刘文静. 应用最小二乘支持向量机预测煤的发热量[J]. 东北电力学院学报, 2006, 26(6): 66-69
作者姓名:关跃波  尹涌澜  孙斌  周云龙  刘文静
作者单位:东北电力大学能源与机械工程学院,吉林,吉林,132012;吉林大学汽车工程学院热能工程系,吉林,长春,130022;烟台华力热电股份有限公司,山东,烟台,264002
摘    要:为解决现有的煤发热量预测神经网络法的过学习与局部极小点问题,通过对煤热量数据的分析,在统计学习理论和结构风险最小化准则的基础上,建立了基于最小二乘支持向量机(LS-SVM)的煤发热量预测数学模型。在算例分析中与BP神经网络、RBF神经网络预测法进行对比,发现该方法比BP和RBF神经网络具有更高的预测精度,且具有收敛速度快、泛化能力强等优点,为燃煤发热量的预测提供了一种有效的方法。

关 键 词:  发热量  最小二乘支持向量机  神经网络
文章编号:1005-2992(2006)06-0066-04
收稿时间:2006-10-26
修稿时间:2006-10-26

Forecasting Calorific Value of Coal with the Method of least-Squares Support Vector Machine
GUAN Yue-bo,YIN Yong-lan,SUN Bin,ZHOU Yun-long,LIU Wen-jing. Forecasting Calorific Value of Coal with the Method of least-Squares Support Vector Machine[J]. Journal of Northeast China Institute of Electric Power Engineering, 2006, 26(6): 66-69
Authors:GUAN Yue-bo  YIN Yong-lan  SUN Bin  ZHOU Yun-long  LIU Wen-jing
Affiliation:1. Energy Sources and Engine Engineering College, Northeast Dianli University, Jilin City, China, 132012; 3. Yantai Huali Thermal Power Co. Ltd, Yantai, China, 264002
Abstract:In order to overcome the over-fitting problem and the local minor problem of the artificial neural network(ANN) method in prediction of calorific value of coal,a new mathematical model according to the Least-Squares Support Vector Machine(LS-SVM) theory was developed.The model was based on the analysis of the characters of coal calorific value data,the statistical theory(SLT),and the empirical risk minimization(ERM) principle.The experimental results indicated that compared to the back propagation(BP) and Radial Basis Function(RBF) neural network method,this model was faster in computation and had better generalization performance,which provides a highly effective method for the prediction of coal calorific value.
Keywords:coal  calorific value  Least-Squares Support Vector Machine  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号