首页 | 本学科首页   官方微博 | 高级检索  
     


Recursive decomposition and bounds of the lattice of Moore co-families
Authors:Pierre Colomb  Alexis Irlande  Olivier Raynaud  Yoan Renaud
Affiliation:1. Campus Universitaire des Cézeaux, Université Blaise Pascal - Clermont-Ferrand/Laboratoire LIMOS, 63173, Aubière, France
2. Universidad Nacional de Colombia, Bogota, Colombia
Abstract:A collection of sets on a ground set U n (U n ?=?{1,2,...,n}) closed under intersection and containing U n is known as a Moore family. The set of Moore families for a fixed n is in bijection with the set of Moore co-families (union-closed families containing the empty set) denoted $mathbb{M}_n$ . In this paper, we propose a recursive definition of the set of Moore co-families on U n . Then we apply this decomposition result to compute a lower bound on $|mathbb M_n|$ as a function of $|mathbb M_{n-1}|$ , the Dedekind numbers and the binomial coefficients. These results follow the work carried out in [1] to enumerate the number of Moore families on U 7.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号