首页 | 本学科首页   官方微博 | 高级检索  
     


Chemically functionalized SiO2 to improve mechanical properties of oil-impregnated monomer casting nylon
Authors:Qin Wang  Qian Zhang  Fan Wang  Yanwen Zhao  Yuexin Wang
Affiliation:School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130 People's Republic of China
Abstract:ABSTRACT: Toluene-2,4-diisocyanate and dodecanol were used to chemically functionalize nanosilica (TDID-SiO2). Composites of TDID-SiO2 and oil-impregnated monomer casting nylon (OMC nylon) were prepared by an in situ anionic ring-opening polymerization. The dispersion of the TDID-SiO2 in oil was studied along with the mechanical and friction properties of the composites. The results show that the dispersion of the TDID-SiO2 in oil was significantly enhanced. Specifically, some TDID-SiO2 was wrapped in oil droplets, and the size of the oil droplets increased from 2.3 to 3.3 μm for 0–0.125 wt % of the TDID-SiO2 nanoparticles, which was confirmed by scanning electron microscopy. The composites exhibited excellent mechanical properties when 0.10 wt % TDID-SiO2 was integrated into OMC nylon. The tensile strength, elastic modulus, notched impact strength, flexural strength, and flexural modulus increased by 6.9%, 7.1%, 33.2%, 15%, and 77.5%, respectively, compared to OMC nylon without TDID-SiO2 nanoparticles. The friction coefficient was effectively controlled and the abrasion quantity was reduced. Thermogravimetric analysis showed that the thermal decomposition temperature was also improved. The improved mechanical and frictional properties of TDID-SiO2/OMC nylon composite will enhance its application in wear-resistant products in heavy industry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46994.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号