首页 | 本学科首页   官方微博 | 高级检索  
     


Amino-functionalized magnetic zirconium alginate beads for phosphate removal and recovery from aqueous solutions
Authors:Huayong Luo  Hongwei Rong  Tian C Zhang  Xueyang Zeng  Jun Wan
Affiliation:1. School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China;2. Civil Engineering Department, University of Nebraska–Lincoln, Omaha, Nebraska 68182;3. School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Abstract:Amino-functionalized magnetic zirconium alginate beads with an interpenetrating network (Fe3O4/PAM/SA–Zr) were prepared, characterized, and then tested as a novel biomass adsorbent for phosphate removal and recovery. The hydrogel beads exhibited outstanding thermostability and possessed a magnetic response. The effects of the pH, dosage, initial phosphate concentration, interference ions, and temperature on the removal of phosphate were investigated. The kinetics, isotherms, and thermodynamics of the adsorption were studied. Notably, the adsorption of phosphate was endothermic, feasible, and spontaneous with a maximum uptake capacity of 42.23 mg-P/g at an optimized pH of 2.0. The phosphate could be desorbed effectively with a 0.2 mol/L NaOH solution, and the adsorbent exhibited a good reusability. The possible adsorption mechanisms were verified by zeta potential, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. Continuous phosphate-adsorption tests were conducted in a fixed-bed columns packed with Fe3O4/PAM/SA–Zr, and the breakthrough curves were predicted by the Adams–Bohart, Thomas, and Yoon–Nelson models, respectively. The suitability of the hydrogel beads for the treatment of real wastewater was also tested. These hydrogel beads should be a promising adsorbent for phosphate removal and recovery from aqueous solutions, with the advantages of a high uptake capacity, good reusability, and easy magnetic separation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46897.
Keywords:adsorption  applications  copolymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号