首页 | 本学科首页   官方微博 | 高级检索  
     

大数据评测基准的研发现状与趋势
引用本文:周晓云,覃雄派,王秋月. 大数据评测基准的研发现状与趋势[J]. 计算机应用, 2015, 35(4): 1137-1142. DOI: 10.11772/j.issn.1001-9081.2015.04.1137
作者姓名:周晓云  覃雄派  王秋月
作者单位:1. 江苏师范大学 计算机科学与技术学院, 江苏 徐州 221116;2. 中国人民大学 信息学院, 北京 100872
基金项目:国家自然科学基金资助项目(61170013,61202331);江苏省自然科学基金资助项目(BK2012578)
摘    要:工业界、学术界,以及最终用户都急切需要一个大数据的评测基准, 用以评估现有的大数据系统,改进现有技术以及开发新的技术。回顾了近几年来大数据评测基准研发方面的主要工作。 对它们的特点和缺点进行了比较分析。在此基础上, 对研发新的大数据评测基准提出了一系列考虑因素:1)为了对整个大数据平台的不同子工具进行评测, 以及把大数据平台作为一个整体进行评测, 需要研发面向组件的评测基准和面向大数据平台整体的评测基准, 后者是前者的有机组合;2)工作负载除了SQL查询之外, 必须包含大数据分析任务所需要的各种复杂分析功能, 涵盖各类应用需求;3)在评测指标方面,除了性能指标(响应时间和吞吐量)之外, 还需要考虑其他指标的评测, 包括系统的可扩展性、容错性、节能性和安全性等。

关 键 词:大数据  评测基准  性能  可扩展性  容错性  节能性  安全性  
收稿时间:2014-10-28
修稿时间:2014-12-21

Big data benchmarks: state-of-art and trends
ZHOU Xiaoyun , QIN Xiongpai , WANG Qiuyue. Big data benchmarks: state-of-art and trends[J]. Journal of Computer Applications, 2015, 35(4): 1137-1142. DOI: 10.11772/j.issn.1001-9081.2015.04.1137
Authors:ZHOU Xiaoyun    QIN Xiongpai    WANG Qiuyue
Affiliation:1. School of Computer Science and Technology, Jiangsu Normal University, Xuzhou Jiangsu 221116, China;
2. School of Information, Renmin University of China, Beijing 100872, China
Abstract:A big data benchmark is needed eagerly by customers, industry and academia, to evaluate big data systems, improve current techniques and develop new techniques. A number of prominent works in last several years were reviewed. Their characteristics were introduced and the shortcomings were analyzed. Based on that, some suggestions on building a new big data benchmark are provided, including: 1) component based benchmarks as well as end-to-end benchmarks should be used in combination to test different tools inside the system and test the system as a whole, while component benchmarks are ingredients of the whole big data benchmark suite; 2) workloads should be enriched with complex analytics to encompass different application requirements, besides SQL queries; 3) other than performance metrics (response time and throughput), some other metrics should also be considered, including scalability, fault tolerance, energy saving and security.
Keywords:big data  benchmark  performance  scalability  fault tolerance  energy saving  security
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号