首页 | 本学科首页   官方微博 | 高级检索  
     


Micromachined jets for liquid impingement cooling of VLSI chips
Authors:Wang   E.N. Lian Zhang Linan Jiang Jae-Mo Koo Maveety   J.G. Sanchez   E.A. Goodson   K.E. Kenny   T.W.
Affiliation:Dept. of Mech. Eng., Stanford Univ., CA, USA;
Abstract:Two-phase microjet impingement cooling is a potential solution for removing heat from high-power VLSI chips. Arrays of microjets promise to achieve more uniform chip temperatures and very high heat transfer coefficients. This paper presents the design and fabrication of single-jets and multijet arrays with circular orifice diameters ranging from 40 to 76 /spl mu/m, as well as integrated heater and temperature sensor test devices. The performance of the microjet heat sinks is studied using the integrated heater device as well as an industry standard 1 cm/sup 2/ thermal test chip. For single-phase, the silicon temperature distribution data are consistent with a model accounting for silicon conduction and fluid advection using convection coefficients in the range from 0.072 to 4.4 W/cm/sup 2/K. For two-phase, the experimental results show a heat removal of up to 90 W on a 1 cm/sup 2/ heated area using a four-jet array with 76 /spl mu/m diameter orifices at a flowrate of 8 ml/min with a temperature rise of 100/spl deg/C. The data indicate convection coefficients are not significantly different from coefficients for pool boiling, which motivates future work on optimizing flowrates and flow regimes. These microjet heat sinks are intended for eventual integration into a closed-loop electroosmotically pumped cooling system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号