摘 要: | 针对传统化工过程中检测变量具有的非线性和非高斯性等特点,提出将改进的核主元分析(KPCA)和支持向量数据描述(SVDD)相结合的化工过程故障诊断方法.根据Mexican hat小波在提取非线性非平稳信号细微特征方面的优势,将该小波函数引入到KPCA中以增强核函数的非线性映射和抗噪能力.在映射后的特征空间中进行均值聚类分析,选择每个聚类中展现特征中心的数据,使运算复杂度明显降低,提高了监控实时性.采用SVDD描述经过聚类降维后的特征空间分布,提出新的监控指标描述过程的非高斯特性.将该方法应用在一个实际的溶剂脱水化工精馏过程中,仿真结果验证了该方法能够及时有效地检测系统产生的故障.
|