首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of microstructures and properties of poly(lactic acid)/poly(ε‐caprolactone) blends compatibilized with polyoxymethylene
Authors:Zijian Song  Xiulong Huang  Xueli Lu  Qiaoqiang Lv  Nai Xu  Sujuan Pang  Lisha Pan  Tan Li
Affiliation:1. College of Materials and Chemical Engineering, Hainan University, Hainan, 570228, People's Republic of China;2. Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, People's Republic of China;3. Shiner National and Local Joint Engineering and Research Center, Shiner Industrial Co., Ltd., Haikou 570125, People's Republic of China
Abstract:Incompatibility of poly(lactic acid)/poly(?‐caprolactone) (PLA/PCL) (80:20) and (70:30) blends were modified by incorporation of a small amount of polyoxymethylene (POM) (≤3 phr). Impact of POM on microstructures and tensile property of the blends were investigated. It is found that the introduction of POM into the PLA/PCL blends significantly improves their tensile property. With increasing POM loading from zero to 3 phr, elongation at break increases from 93.2% for the PLA/PCL (70:30) sample to 334.8% for the PLA/PCL/POM (70:30:3) sample. A size reduction in PCL domains and reinforcement in interfacial adhesion with increasing POM loading are confirmed by SEM observations. The compatibilization effect of POM on PLA/PCL blends can be attributed to hydrogen bonding between methylene groups of POM and carbonyl groups of PLA and PCL. In addition, nonisothermal and isothermal crystallization behaviors of PLA/PCL/POM (70:30:x) samples were investigated by using differential scanning calorimetry and wide angle X‐ray diffraction measurements. The results indicate that the crystallization dynamic of PLA matrix increases with POM loadings. It can be attributed to the fact that POM crystals have a nucleating effect on PLA. While crystallization temperature is 100 °C, crystallization half‐time can reduce from 9.4 to 2.0 min with increasing POM loading from zero to 3 phr. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46536.
Keywords:biodegradable  crystallization  mechanical properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号