首页 | 本学科首页   官方微博 | 高级检索  
     


Linearization and state estimation of unknown discrete-timenonlinear dynamic systems using recurrent neurofuzzy networks
Authors:Qiang Gan Harris  CJ
Affiliation:Dept. of Electron. & Comput. Sci., Southampton Univ.
Abstract:Model-based methods for the state estimation and control of linear systems have been well developed and widely applied. In practice, the underlying systems are often unknown and nonlinear. Therefore, data based model identification and associated linearization techniques are very important. Local linearization and feedback linearization have drawn considerable attention in recent years. In this paper, linearization techniques using neural networks are reviewed, together with theoretical difficulties associated with the application of feedback linearization. A recurrent neurofuzzy network with an analysis of variance (ANOVA) decomposition structure and its learning algorithm are proposed for linearizing unknown discrete-time nonlinear dynamic systems. It can be viewed as a method for approximate feedback linearization, as such it enlarges the class of nonlinear systems that can be feedback linearized using neural networks. Applications of this new method to state estimation are investigated with realistic simulation examples, which shows that the new method has useful practical properties such as model parametric parsimony and learning convergence, and is effective in dealing with complex unknown nonlinear systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号