首页 | 本学科首页   官方微博 | 高级检索  
     


Admixture of an s-Wave Component to the d-Wave Gap Symmetry in High-Temperature Superconductors
Authors:Albert Furrer
Affiliation:(1) Laboratory for Neutron Scattering, ETH Zurich & PSI Villigen, CH-5232 Villigen PSI, Switzerland
Abstract:Neutron crystal-field spectroscopy experiments in the Y- and La-type high-temperature superconductors HoBa2Cu3O6.56, HoBa2Cu4O8, and La1.81Sr0.15Ho0.04- CuO4 are reviewed. By this bulk-sensitive technique, information on the gap function is obtained from the relaxation behavior of crystal-field transitions associated with the Ho3+ ions which sit as local probes close to the superconducting copper-oxide planes. The relaxation data exhibit a peculiar change from a convex to a concave shape between the superconducting transition temperature T c and the pseudogap temperature T * which can only be modeled satisfactorily if the gap function of predominantly d-wave symmetry includes an s-wave component of the order of 20–25%, independent of the doping level. Moreover, our results are compatible with an unusual temperature dependence of the gap function in the pseudogap region (T cTT *), i.e., a break up of the Fermi surface into disconnected arcs.
Keywords:High-temperature superconductors  Gap symmetry  Pseudogap  Crystal field  Neutron spectroscopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号