首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部特征与视点感知的车辆重识别算法
引用本文:贺晓东,王春艳,孙 昊,赵义武. 基于局部特征与视点感知的车辆重识别算法[J]. 仪器仪表学报, 2022, 43(10): 177-184
作者姓名:贺晓东  王春艳  孙 昊  赵义武
作者单位:1.长春理工大学光电工程学院
摘    要:在车辆重识别任务中,车辆视角的多变性会影响算法的准确性。为了解决视角多变对重识别准确性的影响,本文提出了一种基于局部特征与视点感知的车辆重识别方法。首先,使用语义分割算法将车辆解构为正面、背面、侧面、顶部4个部分,以提高车辆的细粒度表征。通过设计一种车辆视点感知网络,来输出视点的预测概率信息,据此概率信息动态平滑地呈现车辆视点感知效果。利用视点感知效果,为车辆每个局部区域赋予不同的权重,达到缩短类内距离,扩大类间差距,减少视角变化对车辆重识别的影响。利用公开数据集进行实验,其中VeRi776数据集的mAP可达到80.9%。结果表明,本方法可有效提高车辆重识别精度。结合消融实验证明了视点感知的平滑表示对多视角下车辆重识别的有效性。

关 键 词:深度学习  车辆重识别  语义分割  视点感知

Local-features and viewpoint-aware for vehicle re-identification
He Xiaodong,Wang Chunyan,Sun Hao,Zhao Yiwu. Local-features and viewpoint-aware for vehicle re-identification[J]. Chinese Journal of Scientific Instrument, 2022, 43(10): 177-184
Authors:He Xiaodong  Wang Chunyan  Sun Hao  Zhao Yiwu
Affiliation:1.School of Opto-electronic Engineering, Changchun University of Science and Technology
Abstract:The change of vehicle view may affect the accuracy of the re-identification algorithm. To solve the influence of changingviewpoints on the accuracy of re-identification, we propose a vehicle re-identification method based on local features and viewpointperception. First, a parsing module is trained to parse a vehicle into four different views, front, back, side, and top. In this way, thefine-grained representation of the vehicle is improved. Then, we intrduce a vehicle viewpoint-aware network. The output of the networkis the predicted probability information of the viewpoint, and the vehicle viewpoint perception effect is dynamically and smoothlyrepresented according to the probability information. Finally, the viewpoint-aware effect is used to assign different weights to each localarea of the vehicle to shorten the intra-class distance, expand the inter-class distance, and reduce the impact of viewpoint changes onvehicle re-identification. This method is evaluated on public datasets, including VeRi776 and VehicleID. The accuracy of mAP onVeRi776 dataset has achieved 80. 9% . Experimental results show that the proposed method can effectively improve the accuracy ofvehicle re-identification. Ablation experiments demonstrate the effectiveness of the viewpoint-aware smooth representation for vehicle reidentification from multiple viewpoints.
Keywords:deep learning   vehicle re-identification   semantic segmentation   viewpoint aware
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号