首页 | 本学科首页   官方微博 | 高级检索  
     

基于X射线图像和激光点云的煤矸识别方法
引用本文:司 垒,谭 超,朱嘉皓,王忠宾,李嘉豪. 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报, 2022, 43(9): 193-205
作者姓名:司 垒  谭 超  朱嘉皓  王忠宾  李嘉豪
作者单位:1.中国矿业大学机电工程学院
基金项目:国家自然科学基金面上项目(52074271)、江苏省自然科学基金面上项目(BK20211245)、中国博士后科学基金特别资助项目(2020T130696)、江苏省科协青年科技人才托举工程〔苏科协发〔2021〕103号)、江苏高校优势学科建设工程项目(苏政办发〔2018〕87号)资助
摘    要:煤矸高效分选是实现煤炭资源绿色开采的重要手段,其核心技术是煤和矸石的快速精准识别。因此,本文提出了基于X射线图像和激光点云融合的煤矸识别方法。首先,设计了基于局部熵和全局均差加权的改进Otsu分割算法,以此提高X射线图像的分割精度和分割效率;同时,利用直通滤波和体素栅格降采样简化了煤矸激光点云数据,进而提取了X射线图像和激光点云的煤矸组合特征。然后,针对传统麻雀搜索算法(SSA)易陷入局部最优和种群多样性差等问题,提出了多策略改进的SSA算法(ISSA),并用于轻量梯度提升机(LightGBM)参数的寻优,进而设计了基于ISSA-LightGBM的煤矸快速识别模型。最后,搭建了煤矸识别实验平台,开展了相应的实验对比分析,结果表明:ISSA-LightGBM模型的煤矸识别准确达99.00%,综合性能优于其它模型,满足了煤矸高效识别的需求。

关 键 词:煤矸识别  X射线图像  激光点云  特征提取  轻量梯度提升机

A coal-gangue recognition method based on X-ray image and laser point cloud
Si Lei,Tan Chao,Zhu Jiahao,Wang Zhongbin,Li Jiahao. A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument, 2022, 43(9): 193-205
Authors:Si Lei  Tan Chao  Zhu Jiahao  Wang Zhongbin  Li Jiahao
Affiliation:1.School of Mechatronic Engineering, China University of Mining and Technology
Abstract:The efficient separation of coal and gangue is an important way to realize green mining of coal resources, and the coretechnology is the rapid and accurate identification of coal and gangue. Therefore, a coal-gangue recognition method based on the fusion ofX-ray image and laser point cloud is proposed in this article. Firstly, an improved Otsu segmentation algorithm based on the local entropyand global mean difference weighting is designed to enhance the segmentation accuracy and efficiency of X-ray images. Meanwhile, thestraight-through filtering and voxel grid down sampling are used to simplify the laser point cloud data of coal and gangue, and the coalgangue feature combination of X-ray image and laser point cloud is extracted. Then, to address the problems that the traditional sparrowsearch algorithm (SSA) is prone to fall into local optimum and the population diversity is poor, a multi-strategy improved SSA algorithm(ISSA) is proposed to optimize the model parameters of light gradient boosting machine (LightGBM). A coal-gangue fast recognitionmodel based on ISSA-LightGBM is designed. Finally, an experimental platform for the coal-gangue recognition is established and thecorresponding experimental comparative analysis is carried out. Results show that the comprehensive recognition accuracy of ISSALightGBM model can reach to 99. 00% , and the comprehensive performance is superior to other models, which could meet the needs ofefficient coal-gangue recognition.
Keywords:coal- gangue recognition   X-ray image   laser point cloud   feature extraction   LightGBM
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号