首页 | 本学科首页   官方微博 | 高级检索  
     

遗忘曲线的协同过滤推荐模型
引用本文:印桂生,崔晓晖,马志强. 遗忘曲线的协同过滤推荐模型[J]. 哈尔滨工程大学学报, 2012, 0(1): 85-90
作者姓名:印桂生  崔晓晖  马志强
作者单位:哈尔滨工程大学计算机科学与技术学院
基金项目:国家自然科学基金资助项目(60973075);黑龙江省自然科学基金资助项目(F200937);哈尔滨市科技局基金资助项目(RC2009XK010003);哈尔滨工程大学基本科研业务费专项基金资助项目(HEUCF1015,HEUCF100605)
摘    要:针对资源历史评价信息的时效量化问题,研究了一种应用遗忘曲线的协同过滤推荐模型.该模型以推荐信系统的构成要素为基础,将历史信息的时效量化函数引入到未知评分资源的推荐计算中.通过多阶段时效量化方法与时间单位映射函数,揭示不同资源时效衰减速率随用户兴趣变化的规律,获取具有记忆心理学中遗忘特征的推荐评价数值.实验表明,与现有协同过滤推荐模型的推荐效果相比,模型能够合理解决时效量化问题并提供质量较高的推荐效果.

关 键 词:协同过滤  推荐系统  时效量化  时间单位映射函数  遗忘曲线

Forgetting curve-based collaborative filtering recommendation model
YIN Guisheng,CUI Xiaohui,MA Zhiqiang. Forgetting curve-based collaborative filtering recommendation model[J]. Journal of Harbin Engineering University, 2012, 0(1): 85-90
Authors:YIN Guisheng  CUI Xiaohui  MA Zhiqiang
Affiliation:(College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)
Abstract:According to the time effect of historical information in a recommendation system,a forgetting curvebased collaborative filtering recommendation system was proposed.Based on components of the recommendation system,the model involved a time-effect quantization function into the calculation process of recommendations for unknown resources.Through a multi-procedure time-effect quantization model and the unit time mapping function,the model revealed a pattern of time-effect attenuating with customer’s interest for various resources,and obtained recommendations corresponding with forgetting characteristics of memory psychology.Experimental results demonstrate that this approach can reasonably solve time-effect quantization issues and perform better than current collaborative filtering recommendation systems.
Keywords:collaborative filtering  recommendation system  quantization of time-effect  time mapping function  forgetting curve
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号