首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化随机森林算法预测食品检验不合格指标
引用本文:刘玉航,曲媛,蒋嘉铭,宗万里,朱习军. 基于优化随机森林算法预测食品检验不合格指标[J]. 食品安全质量检测学报, 2021, 12(18): 7467-7472
作者姓名:刘玉航  曲媛  蒋嘉铭  宗万里  朱习军
作者单位:青岛科技大学,青岛科技大学,青岛科技大学,威海市食品药品检验检测中心
基金项目:山东省重点研发计划(2015GSF119016)
摘    要:目的 建立基于优化的随机森林算法模型实现对食品不合格指标的分类预测.方法 通过收集山东省食品药品监督管理局2015—2019年食品安全抽样检验产生的不合格数据,并对其进行多项数据预处理操作,采用超参数网格搜索和10折交叉验证方法建立基于随机森林的食品不合格指标的分类预测模型,并通过对传统随机森林模型的参数优化,将其与决...

关 键 词:食品安全数据  决策树  随机森林  参数优化  超参数网格搜索
收稿时间:2021-06-09
修稿时间:2021-08-24

Prediction of unqualified index of food inspection based on optimized random forest algorithm
LIU Yu-Hang,QU Yuan,JIANG Jia-Ming,ZONG Wan-Li,ZHU Xi-Jun. Prediction of unqualified index of food inspection based on optimized random forest algorithm[J]. Journal of Food Safety & Quality, 2021, 12(18): 7467-7472
Authors:LIU Yu-Hang  QU Yuan  JIANG Jia-Ming  ZONG Wan-Li  ZHU Xi-Jun
Affiliation:Qingdao University of Science and Technology,Qingdao University of Science and Technology,Qingdao University of Science and Technology,Weihai food and drug inspection and Testing Center
Abstract:Objective Food unqualified indicators endanger human dietary health. This paper applies data mining technology to food safety testing.Methods Through the collection of unqualified data generated by the food safety sampling inspection from 2015 to 2019 issued by the official website of Shandong Food and Drug Administration, and a number of data preprocessing operations, the hyperparameter grid search and 10-folds cross-validation method are used to establish A classification prediction model based on random forest-based food unqualified indicators. In addition, by optimizing the parameters of the traditional random forest model, it is classified with decision tree (DT), logistic regression (LR) and gradient boosting decision tree (GBDT) algorithms The forecast results were compared.Results Experiments show that the random forest model after parameter optimization can achieve 89.4% prediction accuracy of unqualified indicators in food, which is 11% higher than the DT algorithm, 9% higher than the LR algorithm, and 8.1% higher than the GBDT algorithm.Conclusion The optimized random forest model can complete the classification and prediction task of food unqualified indicators, and has broad application prospects.
Keywords:food safety data   decision tree   random forest   parameter optimization   hyper parametric grid sear
点击此处可从《食品安全质量检测学报》浏览原始摘要信息
点击此处可从《食品安全质量检测学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号