首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的期望最大图像分割方法
引用本文:陈慧楠,宋凯. 一种改进的期望最大图像分割方法[J]. 数字社区&智能家居, 2007, 2(8): 509
作者姓名:陈慧楠  宋凯
作者单位:沈阳理工大学信息科学与工程学院 辽宁沈阳110168
基金项目:辽宁省教育厅A类基金[20243303]
摘    要:期望最大算法是进行极大似然估计的一种有效方法,它主要用于观测数据不完全或者似然函数不是解析时的参数估计。文中提出了一种期望最大化和贝叶斯信息准则相结合的图像分割方法。首先,运用K均值方法初始化图像分布;然后,运用期望最大算法估计输入图像参数数据,图像中类的数目由贝叶斯消息准则自动确定;最后,运用最大似然标准将像素归类于最相近的类中。实验中将此方法用于对葡萄叶部病害彩色图像的分割,其结果表明此方法有效。

关 键 词:期望最大  贝叶斯信息准则  图像分割  图像处理
文章编号:1009-3044(2007)08-20509-01
修稿时间:2007-04-12

An Improved Expectation-Maximization Image Segmentation Approach
Chen Huinan,Song Kai. An Improved Expectation-Maximization Image Segmentation Approach[J]. Digital Community & Smart Home, 2007, 2(8): 509
Authors:Chen Huinan  Song Kai
Abstract:EM algorithm is an efficient tool to deal with the maximum likelihood estimation(MLE).The major applications of EM algorithm is that analysis data is incomplete or the maximum likelihood function is not analytical. The paper proposes an image segmentation approach that is based on Expectation-Maximization and bayesian information Criterion.The Expectation-Maximization theory is used to estimate the data distribution of the input image firstly. The number of class is calculated by Bayesian Information Criterion secondly. The Maximum Likelihood is employed to classify the image pixels into the nearest class finally. This method is used color image segmentation of grape leafage disease. The results show that this method is efficient.
Keywords:Expectation-Maximization  Bayesian Information Criterion  Image Segmentation  image processing
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号