首页 | 本学科首页   官方微博 | 高级检索  
     


Wind energy analysis based on turbine and developed site power curves: A case-study of Darling City
Affiliation:1. Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada;2. University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada;3. Clinical Epidemiology Program, Methods Centre, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
Abstract:The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号