摘 要: | 自适应图像隐写算法是一种以图像为载体,通过手工设计嵌入失真代价,指导隐写码在图像载体中嵌入秘密消息的信息隐藏算法.长期以来,这类算法将秘密消息尽可能隐藏在图像纹理更深更复杂的位置以对抗基于富特征的隐写分析检测.然而,伴随着深度学习在隐写分析领域的快速发展,人工设计的自适应算法受到严重挑战.此外,基于加性失真的隐写编码在嵌入消息时,复杂纹理向边界聚集所产生的统计异常问题也亟待解决.因此,本文总结了各类人工失真代价的优势和不足,归纳出当前自适应算法在空域的设计范式,并结合UNIWARD在各嵌入域的转换规则,提出基于嵌入失真代价ρ的通用域隐写转换公式.然后,从隐写嵌入失真代价与图像纹理稀疏关系的角度出发,以Canny算子划分纹理、Gauss模糊缩放轮廓、AutoML搜索阈值的方式,提出了一种通用域隐写算法Canny Gauss.实验结果表明,本文所提通用域隐写转换公式能够有效应用于现有主流算法.同时,在UNIWARD所有可行嵌入域中,本文所提算法表达出更高嵌入失真代价稳定性和隐写隐蔽性,在第三方权重加持下的深度隐写分析表现与UNIWARD相比至少提升2.6%、最高提升14.6%.这为自适应隐...
|