首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison
Affiliation:1. Hubei Digital Manufacturing Key Laboratory, School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China;2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Micro end milling is an important process in the manufacture of micro and meso scale products and has an advantage of creating more complex geometry in a wider variety of materials in comparison with other micro-machining methods. In this paper, a new methodology for predicting the cutting coefficients considering the edge radius and material strengthening effects is presented. Further a mechanistic model is developed to predict the cutting forces in micro end milling operation taking into account overlapping tooth engagements. The mechanistic model, derived from basics considering material property and principles of metal cutting, is valid for a wider range of cutting parameters. The model is validated with the results from micro slot end-milling of mild steel carried out on the basis of full factorial design. On comparing the amplitudes of cutting forces, it is seen that mechanistic model predicts the transverse force with an average absolute error of 12.29%, while a higher prediction error of 19.49% is obtained for feed force. Additionally the mechanistic model is able to predict the variations in the cutting forces with rotation of the cutter and average absolute deviations of 13% and 11% are obtained for feed and transverse forces, respectively.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号