摘 要: | 针对激光雷达采集行驶车辆的三维点云数据中包含过多畸变数据,影响车辆定位效果的问题,本文研究一种基于激光雷达和特征地图的车辆智能定位方法。激光雷达利用基于飞行时间的激光测距法,采集车辆及其行驶环境的三维激光点云数据,去除激光点云数据中的畸变数据。利用正态分布变换方法,优化删除畸变数据的点云集的正态分布概率值,配准三维激光点云数据。从完成配准后的三维激光点云数据中,提取柱状物体的圆形特征,构建车辆行驶的自然柱状特征地图。利用卡尔曼滤波算法,结合自然柱状特征地图信息,实现高精度的车辆智能定位。实验结果证明:该方法可以精准定位车辆目标,车辆智能定位精度较高,最高可达到97%,定位效率较好,最短可在5 s时间内完成定位,具有一定应用价值。
|