首页 | 本学科首页   官方微博 | 高级检索  
     

表面吸附对JO-9159炸药感度影响的分子动力学模拟
引用本文:郭亚南,王玉玲.表面吸附对JO-9159炸药感度影响的分子动力学模拟[J].火工品,2016(3):43-47.
作者姓名:郭亚南  王玉玲
作者单位:火箭军工程大学,陕西 西安,710025
摘    要:为研究表面吸附对JO-9159炸药感度的影响,通过Materials Studio软件搭建JO-9159的无定形六组分模型,在COMPASS力场和NPT系综下,对其(001)、(010)和(100)3种晶面的表面吸附进行了周期性分子动力学模拟,基于平衡轨迹对JO-9159的感度进行了研究。结果表明:在295K温度下,吸附后其引发键N-NO_2最大键长(L_(max))较吸附前增大,引发键连双原子作用能(EN-N)和内聚能密度(CED)较吸附前减小,表明吸附后体系感度增大;随着JO-9159炸药表面吸附气体分子数量的增加,L_(max)递增,EN-N递减,CED呈减小趋势,都表明体系感度随着吸附分子数的增加而增大;在195~395K温度内,随着温度的升高,吸附后的JO-9159中N-NO_2的Lmax递增,E_(N-N)呈递减趋势,CED递减,与感度随温度升高而增大的实验事实相一致。

关 键 词:炸药  分子动力学模拟  表面吸附  感度

Effects of Surface Adsorption on Sensitivity of JO-9159 by Molecular Dynamics Simulation
Abstract:To explore effects of surface adsorption on sensitivity of JO-9159, the amorphous model of six components was constructed by Materials Studio software, periodic molecular dynamics simulation was conducted for (001), (010), (100) crystal planes of JO-9159 in COMPASS force field and NPT ensemble. Sensitivity of JO-9159 were researched based-on equilibrium trajectory of model. The results show that at the temperature of 295K , the maximum bond length (Lmax) of N-NO2 trigger bond increases, the interaction energy (EN-N) between two N atoms of the N-NO2 trigger bond and cohesive energy density (CED) decreases after adsorption, which indicate that JO-9159 becomes more sensitive after adsorption. With the number of gas molecules of adsorption on JO-9159 surface increases, theLmax increases, theEN-N decreases and CED shows a decreasing trend, three of which indicate that JO-9159 becomes more sensitive with the number of gas molecules of adsorption. In the temperature ranging from 195K to 395K, theLmax of N-NO2 trigger bond increases after adsorption,theEN-N shows a decreasing trend and CED decreases as increasing the temperature, which agree with the experimental fact that the sensitivity becomes higher as the temperature increasing.
Keywords:Explosives  Molecular dynamics simulation  Surface adsorption  Sensitivity
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号