首页 | 本学科首页   官方微博 | 高级检索  
     

基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术
作者姓名:刘哲  徐涛  宋余庆  徐春艳
作者单位:江苏大学计算机科学与通信工程学院;吉林大学机械科学与工程学院
摘    要:
针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)和相似信息鲁棒主成分分析(Robust principle component analysis,RPCA)模型的图像融合技术。首先对源图像获取图像块构造初始矩阵,通过对构造矩阵进行NSCT分解获得高频和低频部分,利用提出的具有相似信息低秩矩阵模型将低频成分分解成低秩矩阵和稀疏误差矩阵,再分别对两幅图像的低秩矩阵、稀疏误差矩阵及高频成分采用绝对值最大法融合规则进行融合,最后通过逆变换得到融合图像。MRI和CT的脑部图像的实验分析结果表明,本文算法可以更好地保留源图像中的边缘和纹理信息。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号