首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater
Authors:Hansard S Paul  Easter Hillary D  Voelker Bettina M
Affiliation:Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States. paul.hansard@dep.state.fl.us
Abstract:Superoxide radical (O2-) has been proposed to be an important participant in oxidation-reduction reactions of metal ions in natural waters. Here, we studied the reaction of nanomolar Mn(II) with O2- in seawater and simulated freshwater, using chemiluminescence detection of O2- to quantify the effect of Mn(II) on the decay kinetics of O2-. With 3-24 nM added [Mn(II)] and <0.7 nM [O2-], we observed effective second-order rate constants for the reaction of Mn(II) with O2- of 6×10(6) to 1×10(7) M(-1)·s(-1) in various seawater samples. In simulated freshwater (pH 8.6), the effective rate constant of Mn(II) reaction with O2- was somewhat lower, 1.6×10(6) M(-1)·s(-1). With higher initial [O2-], in excess of added [Mn(II)], catalytic decay of O2- by Mn was observed, implying that a Mn(II/III) redox cycle occurred. Our results show that reactions with nanomolar Mn(II) could be an important sink of O2- in natural waters. In addition, reaction of Mn(II) with superoxide could maintain a significant fraction of dissolved Mn in the +III oxidation state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号