首页 | 本学科首页   官方微博 | 高级检索  
     


Implementation of scalable power and area efficient high-throughputViterbi decoders
Authors:Gemmeke   T. Gansen   M. Noll   T.G.
Affiliation:Dept. of Electr. Eng. & Comput. Syst., Aachen Inst. of Technol.;
Abstract:Today's data reconstruction in digital communication systems requires designs of highest throughput rate at low power. The Viterbi algorithm is a key element in such digital signal processing applications. The nonlinear and recursive nature of the Viterbi decoder makes its high-speed implementation challenging. Several promising approaches to achieve either high throughput or low power have been proposed in the past. A combination of these is developed in this paper. Additional new concepts allow building a signal-flow graph suitable for the design of high-speed Viterbi decoders with low power. Using a flexible datapath generator facilitates the essential quantitative optimization from architectural down to physical level to fully exploit the low-power and high-speed potential of a given technology. With parameterizable design entry, this datapath generator establishes the basis of a scalable platform-based design library. Altogether, this allows coverage of the range of today's industrial interest in high throughput rates, from 150 Msymbols/s up to 1.2 Gsymbols/s using conventional CMOS logic. The features of two exemplary Viterbi decoder implementations prove the benefit of this physically oriented design methodology in terms of speed and low power, when compared to other leading edge implementations
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号